Digital Elevation Model generation for historical landscape analysis based on LiDAR data, a case study in Flanders (Belgium)
نویسندگان
چکیده
The UGent Institutional Repository is the electronic archiving and dissemination platform for all UGent research publications. Ghent University has implemented a mandate stipulating that all academic publications of UGent researchers should be deposited and archived in this repository. Except for items where current copyright restrictions apply, these papers are available in Open Access. Summary This paper discusses the generation of a high precision DEM (Digital Elevation Model) based on high density airborne LiDAR (Light Detection and Ranging) data for an interdisciplinary landscape archaeological study concerning the settlement history and environment in Sandy Flanders, a region to the north of Ghent (Belgium). The objective was to create a detailed topographical surface free of artificial features and topographical artefacts, in the form of a DEM, visualizing the natural and current topography through the implementation of true ground points only. The semi-automatical removal of these features and artefacts was based on topographical vector data, visual interpretations and slope analysis. Ultimately two DEM's were constructed (1) a TIN (Triangulated Irregular Network) model, whereby the inherent large file format restricts the usability to large scale and (2) a grid model which can be used for small-, medium-and large-scale applications. Both datasets were used as an image that is interpreted using ancillary data from historical sources. Its usefulness is illustrated in a case of field pattern and microfield topography. Starting from this DEM, the approach of this landscape historical study is mainly retrogressive, i.e. starting from the landscape structures and elements that are still present in the contemporary landscape and moving into the past.
منابع مشابه
Building Change Detection from Historical Aerial Photographs Using Dense Image Matching and Object-Based Image Analysis
A successful application of dense image matching algorithms to historical aerial photographs would offer a great potential for detailed reconstructions of historical landscapes in three dimensions, allowing for the efficient monitoring of various landscape changes over the last 50+ years. In this paper we propose the combination of image-based dense DSM (digital surface model) reconstruction fr...
متن کاملParallel Landscape Driven Data Reduction & Spatial Interpolation Algorithm for Big LiDAR Data
Airborne Light Detection and Ranging (LiDAR) topographic data provide highly accurate digital terrain information, which is used widely in applications like creating flood insurance rate maps, forest and tree studies, coastal change mapping, soil and landscape classification, 3D urban modeling, river bank management, agricultural crop studies, etc. In this paper, we focus mainly on the use of L...
متن کاملGeomorphometric Analysis of Maroon River by Digital Elevation Model
Digital Elevation Models (DEMs) are used to estimate different morphologies, analysis of river profile, delineating drainage basin and drainage pattern associated with lithological and structural changes. The study area is Maroon River located in Khuzestan Province, Iran. In this study geomorphometric analysis based on DEM carried out to understand Maroon river uplift rate and tectonic- erosion...
متن کاملEvaluating optimized digital elevation precipitation model using IDW method (Case study: Jam & Riz Watershed of Assaloyeh, Iran)
A watershed management program is usually based on the results of watershed modeling. Accurate modeling results are decided by the appropriate parameters and input data. Precipitation is the most important input for watershed modeling. Precipitation characteristics usually exhibit significant spatial variation, even within small watersheds. Therefore, properly describing the spatial variation o...
متن کاملTwo-Dimetional Hydraulic Simulation of Floods using the LISFLOOD-FP Raster Model (A Case Study: The Shemshak Watershed, Tehran Province)
LISFLOOD-FP belongs to a new generation of hydrodynamic models of flood simulation, which is implemented by a digital elevation map for the river and the waterways, route information and flow rates The LISFLOOD-FP features are two-dimensional hydraulic models: 1. based on raster 2. large scale 3. ease of formulation and high computational efficiency 4. simplicity of use 5. spatial adjustmen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011